How The World Sees The Trumpster

England


A man takes a picture of a mural by English street artist Bambi depicting British Prime Minister Theresa May dancing with US President Donald Trump in London on February 22, 2017. / AFP PHOTO / Daniel LEAL-OLIVAS / AFP/Getty Images


A woman runs along a towpath near graffiti depicting U.S. President Donald Trump on a canal bridge in east London, Britain, February 18, 2017. REUTERS/Toby Melville[/caption]

Bulgaria


Mural depicting US President Donald Trump is seen on a wall as part of Mural Festival in the village of Staro Zhelezare, Bulgaria, Wednesday 26 July 2017. Outdoor murals on the walls of houses in the village of Staro Zhelezare feature local people alongside well known figures from the worlds of politics and religion. (Photo by Valentina Petrova/NurPhoto via Getty Images)

China

This photo taken on December 24, 2016 shows a giant chicken sculpture outside a shopping mall in Taiyuan, north China’s Shanxi province.
A Chinese shopping mall is ringing in the year of the cock with a giant sculpture of a chicken that looks like US president-elect Donald Trump. / AFP / STR / China OUT (Photo credit should read STR/AFP/Getty Images)

Brazil

Months after pro- and anti-Trump protesters clashed violently in São Paulo, displeased demonstrators returned to the streets on the day of his inauguration.

Indonesia


A man cycles past graffiti condemning US Republican presidential nominee Donald Trump, on a street in Surabaya, Indonesia’s east Java on October 17, 2016. / AFP / JUNI KRISWANTO/AFP/Getty Images

Ireland

A mural lampooning US President Donald Trump in Dublin’s Temple Bar by artist ADW. (Photo by Niall Carson/PA Images via Getty Images)

Israel


Tourists walk past a graffiti by street artist Lushsux, depicting US President Donald Trump kissing Israeli Prime Minister Benjamin Netanyahu drawn on the controversial Israeli separation barrier separating the West Bank town of Bethlehem from Jerusalem, on October 29, 2017. / AFP PHOTO / Musa AL SHAER/AFP/Getty Images


In the days after Trump’s election, a souvenir shop sold politically satirical merchandise in Jerusalem’s Old City, including items depicting Trump as a Hasidic Jew and Barack Obama donning a kaffiyeh. Israelis, on the whole, preferred Hillary Clinton in the election, but Hasidic Jews have expressed approval of Trump’s alignment with Israeli Prime Minister Benjamin Netanyahu and the fact that his daughter Ivanka converted to Judaism.

Italy


Many Italians see Trump as the American version of Silvio Berlusconi, the flamboyant media tycoon turned prime minister. In late October, artist Dario Gambarin remade a cornfield outside Verona into a colossal portrait of Trump. “In Italy, we say ‘ciao’ to say hello and goodbye,” Gambarin told Inside Edition. “I am saying hello if he becomes president and goodbye if he doesn’t.” Trump, he added, “would not make a good president.”
Dario Gambarin | Getty Images


The Carnival of Viareggio, an annual Mardis Gras parade hosted by the Tuscan city of Viareggio, is traditionally celebrated with giant papier-mâché floats depicting caricatures of popular characters and politicians. This year, parade floats featured elaborate masks of Trump and Hillary Clinton.
Getty Images

Mexico

Detail of the mural paint made by Mexican artist Luis Sotelo called “We are migrants not criminals” (Somos migrantes no delincuentes) in Tonatico, Mexico, on 25 June 2016.
The mural is part of the cultural movement “Stop Trump”. / AFP / MARIO VAZQUEZ/AFP/Getty Images

View of a graffiti painted against US President Donald Trump in Mexico City on June 27, 2017. / AFP PHOTO / ALFREDO ESTRELLA/AFP/Getty Images


In Mexico City, graffiti denounced Trump on the day of his inauguration.
Getty Images

Picture of a graffiti against US Republican presidential hopeful Donald Trump painted by an unknown artist on the embankment of the Bravo River on the border with the United States, in Ciudad Juarez, Chihuahua State, Mexico, on June 28, 2016. / AFP / JESUS ALCAZAR/AFP/Getty Images


A mural reading “Todos somos migrantes” (“We are all migrants”) in Tijuana sits close to the U.S.-Mexican border.
Getty Images

Spain

A man takes pictures of a graffiti of Republican presidential candidate Donald Trump in Barcelona on June 7, 2016. / AFP / JOSEP LAGO/AFP/Getty Images

Lithuania

VILNIUS, LITHUANIA – MARCH 17: A mural of U.S. President Donald Trump (R) and Russian President Vladimir Putin ‘shotgunning’ a marijuana joint is seen on March 17, 2017 in Vilnius, Lithuania. Trump has decreased his tweeting of praise for his Russian counterpart as the former’s administration has found itself on the defensive amidst investigations into Russia’s meddling in U.S. elections last year. (Photo by Adam Berry/Getty Images)

Serbia


The Cyrillic words at the center of this painting of Trump and Putin in Belgrade read “Kosovo is Serbia,” a nod to Serbia’s, and Russia’s, refusal to recognize Kosovo’s sovereignty. Trump’s candidacy has renewed enthusiasm for the United States among Serbia’s ultranationalists, many of whom see him as an ally in their opposition to globalization.
Getty Images

Russia


In Russia, where Trump’s friendliness with Putin has been well-received, Trump has begun to appear in commercial contexts, including on a commemorative smartphone case released shortly after his election and on sugar boxes at a supermarket in the city of Tula.
Getty Images

USA

A Donald Trump mural covers a building in the Wynwood neighborhood of Miami, Florida, on October 27, 2016.
The Anti-Trump, batman themed mural was created by the artists of the Bushwick Collective ahead of the US presidential election. / AFP / RHONA WISE /AFP/Getty Images

Programmers Attack Go With Brute Force

Last June an article by Jonathan Schaeffer, Martin Müller & Akihiro Kishimoto, AIs Have Mastered Chess. Will Go Be Next? was published. “Randomness could trump expertise in this ancient game of strategy,” followed. “Jonathan Schaeffer, a computer science professor at the University of Alberta, in Canada, had been creating game-playing artificial intelligence programs for 15 years when Martin Müller and Akihiro Kishimoto came to the university in 1999 as a professor and graduate student, respectively. Kishimoto has since left for IBM Research–Ireland, but the work goes on—and Schaeffer now finds it plausible that a computer will beat Go’s grand masters soon. “Ten years ago, I thought that wouldn’t happen in my lifetime,” he says.” (http://spectrum.ieee.org/robotics/artificial-intelligence/ais-have-mastered-chess-will-go-be-next)

Jonathan Schaeffer is the man behind Chinook, the computer program that solved Checkers. You can find the paper, Checkers is Solved, to learn about the proof here: (http://webdocs.cs.ualberta.ca/~chinook/)
He has also revised his book first published in 1997, One Jump Ahead: Computer Perfection at Checkers, which I read years ago. Jonathan Schaeffer is like E. F. Hutton in that when he talks about a computer game program, you listen.

For years I have followed news of computer Go programs. Before sitting down to punch & poke I searched for the latest news, coming up empty. This as good news for humans because Go is the last board game bastion holding against machine power. It is also the world’s oldest, and most complicated, board game. It “originated in ancient China more than 2,500 years ago. It was considered one of the four essential arts of a cultured Chinese scholar in antiquity. Its earliest written reference dates back to the Confucian Analects.” (https://en.wikipedia.org/wiki/Go_%28game%29)

Schaeffer and his group have developed a Go-playing computer program, Fuego, an open-source program that was developed at the University of Alberta. From the article, “For decades, researchers have taught computers to play games in order to test their cognitive abilities against those of humans. In 1997, when an IBM computer called Deep Blue beat Garry Kasparov, the reigning world champion, at chess, many people assumed that computer scientists would eventually develop artificial intelligences that could triumph at any game. Go, however, with its dizzying array of possible moves, continued to stymie the best efforts of AI researchers.”

In 2009 Fuego “…defeated a world-class human Go player in a no-handicap game for the first time in history. Although that game was played on a small board, not the board used in official tournaments, Fuego’s win was seen as a major milestone.”

They write, “Remarkably, the Fuego program didn’t triumph because it had a better grasp of Go strategy. And although it considered millions of possible moves during each turn, it didn’t come close to performing an exhaustive search of all the possible game paths. Instead, Fuego was a know-nothing machine that based its decisions on random choices and statistics.”

I like the part about it being a “know-nothing machine.” I have often wondered if humans, like Jonathan Schaeffer, who are devoting their lives to the development of “thinking” machines, will be reviled by future generations of humans as is the case in the Terminator movies. It could be that in the future humans will say, “Hitler was nothing compared to the evil SCHAEFFER!” If I were supreme world controller a command would be issued ending the attempts to crack Go, leaving my subjects one beautiful game not consigned to the dustbin of history, as has been the fate of checkers. I fear it is only a matter of time before chess meets the same fate. GM Parimarjan Negi was asked in the “Just Checking” Q&A of the best chess magazine in the history of the universe, New In Chess 2014/6, “What will be the nationality of the 2050 World Champion?” He answered the question by posing one of his own, “Will we still have a world championship?” Good question. I would have to live to one hundred to see that question answered. Only former President of the GCA, and Georgia Senior Champion, Scott Parker will live that long, possibly still be pushing wood in 2050, if wood is still being pushed…

The article continues, “The recipe for building a superhuman chess program is now well established. You start by listing all possible moves, the responses to the moves, and the responses to the responses, generating a branching tree that grows as big as computational resources allow. To evaluate the game positions at the end of the branches, the program needs some chess knowledge, such as the value of each piece and the utility of its location on the board. Then you refine the algorithm, say by “pruning” away branches that obviously involve bad play on either side, so that the program can search the remaining branches more deeply. Set the program to run as fast as possible on one or more computers and voilà, you have a grand master chess player. This recipe has proven successful not only for chess but also for such games as checkers and Othello. It is one of the great success stories of AI research.”

Voilà, indeed.

“Go is another matter entirely,” they write, “The game has changed little since it was invented in China thousands of years ago, and millions around the world still enjoy playing it.”

But for how long?

“Game play sounds simple in theory: Two players take turns placing stones on the board to occupy territories and surround the opponent’s stones, earning points for their successes. Yet the scope of Go makes it extremely difficult—perhaps impossible—for a program to master the game with the traditional search-and-evaluate approach.”

This is because, “For starters, the complexity of the search algorithm depends in large part on the branching factor—the number of possible moves at every turn. For chess, that factor is roughly 40, and a typical chess game lasts for about 50 moves. In Go, the branching factor can be more than 250, and a game goes on for about 350 moves. The proliferation of options in Go quickly becomes too much for a standard search algorithm.”

Hooray! That is the good news, and there is more…”There’s also a bigger problem: While it’s fairly easy to define the value of positions in chess, it’s enormously difficult to do so on a Go board. In chess-playing programs, a relatively simple evaluation function adds up the material value of pieces (a queen, for example, has a higher value than a pawn) and computes the value of their locations on the board based on their potential to attack or be attacked. Compared with that of chess pieces, the value of individual Go stones is much lower. Therefore the evaluation of a Go position is based on all the stones’ locations, and on judgments about which of them will eventually be captured and which will stay safe during the shifting course of a long game. To make this assessment, human players rely on both a deep tactical understanding of the game and a clear-eyed appraisal of the overall board situation. Go masters consider the strength of various groups of stones and look at the potential to create, expand, or conquer territories across the board.”

This sounds good so far, but then they continue, “Rather than try to teach a Go-playing program how to perform this complex assessment, we’ve found that the best solution is to skip the evaluation process entirely.”

Oh no, Mr. Bill!

“Over the past decade, several research groups have pioneered a new search paradigm for games, and the technique actually has a chance at cracking Go. Surprisingly, it’s based on sequences of random moves. In its simplest form, this approach, called Monte Carlo tree search (MCTS), eschews all knowledge of the desirability of game positions. A program that uses MCTS need only know the rules of the game.”

I do not know about you, but I am hoping, “What happens in Monte Carlo stays in Monte Carlo.” Do you get the feeling we are about to be Three Card Monte Carloed?

“From the current configuration of stones on the board, the program simulates a random sequence of legal moves (playing moves for both opponents) until the end of the game is reached, resulting in a win or loss. It automatically does this over and over. The magic comes from the use of statistics. The evaluation of a position can be defined as the frequency with which random move sequences originating in that position lead to a win. For instance, the program might determine that when move A is played, random sequences of moves result in a win 73 percent of the time, while move B leads to a win only 54 percent of the time. It’s a shockingly simple metric.”

“Shockingly simple,” my jackass. There is much more to the article, including this, “The best policies for expanding the tree also rely on a decision-making shortcut called rapid action value estimation (RAVE). The RAVE component tells the program to collect another set of statistics during each simulation.”

As in “Raving lunatic.” The article provides a list of what current computer programs have done to games, and how they rate in “…two-player games without chance or hidden information…”

TIC-TAC-TOE (Game positions, 10 to the 4th power) = Toast

OWARE (Game positions, 10 to the 11th power) = Fried

CHECKERS (Game positions, 10 to the 20th power)= Cooked

OTHELLO (Game positions, 10 to the 28th power)= Superhuman

CHESS (Game positions, 10 to the 45th power) = Superhuman

XIANGQI (CHINESE CHESS) (Game positions, 10 to the 48th power) = Best Professional

SHOGI (JAPANESE CHESS) (Game positions, 10 to the 70th power) = Strong Professional

GO = (Game positions, 10 to the 172th power) = Strong Amateur

They end the article by writing, “But there may come a day soon when an AI will be able to conquer any game we set it to, without a bit of knowledge to its name. If that day comes, we will raise a wry cheer for the triumph of ignorance.”

I would much prefer to raise a stein and drown my sorrows to that…